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Generating epsilon-efficient solutions

in multiobjective programming

Alexander Engau∗ and Margaret M. Wiecek∗

Department of Mathematical Sciences

Clemson University, SC, USA

Abstract

Scalarization approaches to purposely generating epsilon-efficient solutions of multiobjective
programs are investigated and a generic procedure for computing these solutions is proposed
and illustrated with an example. Real-life decision making situations in which the solutions are
of significance are described.

Keywords: multiobjective programs, ε-efficient solutions, ε-Pareto outcomes, ε-nondominated
outcomes, scalarizations, ε-optimality.

1 Introduction

In the middle of the nineteen eighties, Loridan (1984) introduced a notion of ε-efficient solutions
for multiobjective programs (MOPs), which was followed by White (1986) who proposed several
concepts of approximate solutions for MOPs and drafted methods for their generation.

For the last two decades, ε-efficient or approximate solutions of MOPs have been examined
in the literature by many authors from different points of view. Existence conditions were devel-
oped by Deng (1997) and Dutta and Vetrivel (2001) for convex MOPs while KKT-type conditions
and saddle point conditions were derived by Dutta and Vetrivel (2001) and Liu (1996). The lat-
ter also proposed ε-properly-efficient solutions for convex non-differentiable MOPs. Connections
between different definitions of approximate solutions were analyzed by Yokoyama (1996, 1999).
Vályi (1985), Tammer (1994), Tanaka (1996), and others studied approximate solutions of vector
optimization problems in general ordered vector spaces.

Approximate efficient solutions have also been used for approximation of the Pareto set of spe-
cially structured biobjective programs (BOPs). In this vein, Ruhe and Fruhwirth (1990) developed
an approximation algorithm for a minimum cost flow problem, Blanquero and Carrizosa (2002)

∗Partially supported by the Automotive Research Center, a U.S. Army TACOM Center of Excellence for Modeling
and Simulation of Ground Vehicles at the University of Michigan.
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worked with a location problem, and Angel et al. (2003) studied a scheduling problem. Further-
more, White (1998b) applied the concept of ε-efficient solutions to a portfolio selection problem,
and to a linear MOP with a specially structured feasible set (White (1998a)). Fadel et al. (2002)
attempted to examine the curvature of the Pareto curve for BOPs using ε-efficiency as a measure
of sensitivity.

In view of the literature, the current belief is that the concept of ε-efficient solutions accounts
for modeling limitations or computational inaccuracies, and thus is tolerable rather than desirable.
Consequently, methods purposely avoiding efficiency and guaranteeing ε-efficiency have not been
well developed.

The objective of this paper is to propose methods for generation of ε-efficient solutions. In
Section 2, we formulate the problem of interest and present the terminology used in this paper.
In Section 3, we explore relationships between MOPs and associated single objective programs
(SOPs), a subject matter that has earlier been undertaken by some authors. References specific
for each of the SOPs are listed in the subsections of Section 3 in which these SOPs are examined.

White (1986, 1998b) seems to be the only one to have addressed the practical issue of computing
ε-efficient solutions. The scheme he advocates consists in the computation of approximate efficient
solutions by means of approximate optimal solutions of an SOP associated with the original MOP.
In Section 4, we follow on this scheme and offer specific guidance relating approximate optimality
to approximate efficiency. In Section 5, we present an illustrative example and discuss real-life
decision making situations that motivate this study of approximate efficiency. Section 6 concludes
the paper.

2 Terminology and Problem Formulation

We first introduce some basic notation. Let Rn and Rm be finite dimensional Euclidean vector
spaces and y, y′ ∈ Rm. y > y′ denotes yi > y′i for all i = 1, . . . ,m. y = y′ denotes yi ≥ y′i for
all i = 1, . . . ,m. y ≥ y′ denotes y = y′ but y 6= y′. The relations 5, ≤ and < are defined in the
obvious way. Let Rm

= := {y ∈ Rm : y = 0}. The sets Rm
≥ , Rm

> are defined accordingly.
Let X ⊂ Rn be a feasible set of decisions and let f be a vector-valued objective function

f : Rn → Rm composed of m real-valued functions, f = (f1, . . . , fm), where fi : Rn → R for
i = 1, . . . ,m. The multiobjective program (MOP) is given by

MOP: minimize (f1(x), . . . , fm(x)) subject to x ∈ X

where the minimization is understood as finding the set of efficient solutions in X.

Definition 2.1 Consider the MOP. A point x̂ ∈ X is called

(i) a weakly efficient solution if there does not exist x ∈ X such that f(x) < f(x̂);
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(ii) an efficient solution if there does not exist x ∈ X such that f(x) ≤ f(x̂).

A feasible solution (decision) x ∈ X is evaluated by the m objective functions producing the
outcome f(x). We define the set of all attainable outcomes or criterion vectors for all feasible
solutions in the objective space, Y := f(X) ⊂ Rm. The image f(x) ∈ Y of a (weakly) efficient
point is called a (weak) Pareto outcome.

Yu (1974) introduced the concept of nondominated outcomes as a generalization of Pareto
outcomes.

Definition 2.2 Let D ⊂ Rm be a cone and Y ⊂ Rm. Then ŷ ∈ Y is called

(i) a nondominated outcome of the MOP if there does not exist y ∈ Y, y 6= ŷ and d ∈ D such that
ŷ = y + d, or equivalently, (ŷ − D \ {0}) ∩ Y = ∅;

(ii) a weakly nondominated outcome of the MOP if (ŷ − intD) ∩ Y = ∅.

For D = Rm
=, the nondominated outcomes become the Pareto outcomes. Following Loridan

(1984) we define ε-efficient solutions of the MOP.

Definition 2.3 Consider the MOP and let ε ∈ Rm
=. A point x̂ ∈ X is called

(i) a weakly ε-efficient solution if there does not exist x ∈ X such that f(x) < f(x̂) − ε;

(ii) an ε-efficient solution if there does not exist x ∈ X such that f(x) ≤ f(x̂) − ε.

The image f(x) ∈ Y of a (weakly) ε-efficient point is called a (weak) ε-Pareto outcome. Fol-
lowing Yu (1974) we define (weakly) ε-nondominated outcomes.

Definition 2.4 Let D ⊂ Rm be a cone, ε ∈ D, and Y ⊂ Rm. Then ŷ ∈ Y is called

(i) an ε-nondominated outcome of the MOP if there does not exist y ∈ Y, y 6= ŷ and d ∈ D such
that ŷ = y + d + ε, or equivalently, (ŷ − (D + ε) \ {0}) ∩ Y = ∅;

(ii) a weakly ε-nondominated outcome of the MOP if (ŷ − int(D + ε)) ∩ Y = ∅.

Given the MOP, we formulate a scalarized (single objective) program (SOP). Let S ⊆ X be
a subset of the decision set X, U be a set of auxiliary variables, and Π be a set of parameters.
Let T := f(S) denote the set of attainable outcomes for the SOP and s : T × U × Π → R be a
scalarizing function. Then the SOP associated with the MOP is given by

SOP(π): minimize s(f(x), u, π) subject to x ∈ S, u ∈ U

where π ∈ Π is a vector of parameters chosen by a decision maker. We next review the notion of
optimality and ε-optimality for the SOP.
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Definition 2.5 Consider the SOP and let ε ≥ 0. A point (x̂, û) ∈ S × U is called

(i) an optimal solution if s(f(x̂), û, π) ≤ s(f(x), u, π) for all (x, u) ∈ S × U ; the outcome ŷ =
f(x̂) ∈ T is called optimal;

(ii) strictly ε-optimal solution if s(f(x̂), û, π) < s(f(x), u, π)+ε for all (x, u) ∈ S×U ; the outcome
ŷ = f(x̂) ∈ T is called strictly ε-optimal;

(iii) ε-optimal solution if s(f(x̂), û, π) ≤ s(f(x), u, π) + ε for all (x, u) ∈ S × U ; the outcome
ŷ = f(x̂) ∈ T is called ε-optimal.

Note that by definition, each optimal solution of the SOP is in particular strictly ε-optimal, and
each strictly ε-optimal solution is also ε-optimal.

3 ε-Optimality and ε-Efficiency

In this section, we review seven well-known scalarization methods for the MOP and establish the
corresponding relationships between ε ∈ R and ε ∈ Rm when solving both the scalarized problem
and the MOP for ε-optimality and ε-efficiency, respectively.

3.1 Weighted-sum scalarization

The weighted-sum method for multiobjective programming is defined as

WS(w): minimize
m∑

i=1

wifi(x) subject to x ∈ X,

where w ∈ Rm
≥ is a given weighting parameter. Observe that for this scalarization, the feasible set

is given by S = X so that T = Y is the complete set of outcomes. Moreover, U = ∅ and Π = Rm
≥ .

White (1986), Deng (1997) and Dutta and Vetrivel (2001) studied this method in the context
of relationships between ε-optimality for the SOP and ε-efficiency for the MOP. Following on their
work, we develop more specific results.

Proposition 3.1 Given the MOP and ε ∈ Rm, let ε ≤
∑m

i=1 wiεi.

(i) If ŷ ∈ Y is strictly ε-optimal for the WS(w), then ŷ is ε-Pareto for the MOP.

(ii) If ŷ ∈ Y is ε-optimal for the WS(w), then ŷ is weak ε-Pareto for the MOP.

(iii) If ŷ ∈ Y is ε-optimal for the WS(w) with w ∈ Rm
> , then ŷ is ε-Pareto for the MOP.

Proof Although quite similar, we give all three proofs in detail.
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For (i), let ŷ ∈ Y be strictly ε-optimal for the WS(w),

m∑
i=1

wiŷi <
m∑

i=1

wiyi + ε for all y ∈ Y, y 6= ŷ,

and suppose that ŷ is not ε-Pareto. Then there exists y ∈ Y, y 6= ŷ such that ŷ ≥ y + ε, yielding

m∑
i=1

wiŷi ≥
m∑

i=1

wiyi +
m∑

i=1

wiεi ≥
m∑

i=1

wiyi + ε

in contradiction to the above. Hence, ŷ is ε-Pareto for the MOP.

For (ii), let ŷ ∈ Y be ε-optimal for the WS(w),

m∑
i=1

wiŷi ≤
m∑

i=1

wiyi + ε for all y ∈ Y, y 6= ŷ,

and suppose that ŷ is not weak ε-Pareto. Then there exists y ∈ Y, y 6= ŷ such that ŷ > y + ε,
yielding

m∑
i=1

wiŷi >

m∑
i=1

wiyi +
m∑

i=1

wiεi ≥
m∑

i=1

wiyi + ε

in contradiction to the above. Hence, ŷ is weak ε-Pareto for the MOP.

For (iii), let ŷ ∈ Y be ε-optimal for the WS(w) with w ∈ Rm
> ,

m∑
i=1

wiŷi ≤
m∑

i=1

wiyi + ε for all y ∈ Y, y 6= ŷ,

and suppose that ŷ is not ε-Pareto. Then there exists y ∈ Y, y 6= ŷ such that ŷ ≥ y + ε, yielding

m∑
i=1

wiŷi >

m∑
i=1

wiyi +
m∑

i=1

wiεi ≥
m∑

i=1

wiyi + ε

in contradiction to the above. Hence, ŷ is ε-Pareto for the MOP. ¤

Corollary 3.1 Given the MOP and ε ∈ Rm, let ε ≤
∑m

i=1 wiεi.

(i) If x̂ ∈ X is strictly ε-optimal for the WS(w), then x̂ is ε-efficient for the MOP.

(ii) If x̂ ∈ X is ε-optimal for the WS(w), then x̂ is weakly ε-efficient for the MOP.

(iii) If x̂ ∈ X is ε-optimal for the WS(w) with w ∈ Rm
> , then x̂ is ε-efficient for the MOP.
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3.2 Constrained-objective scalarization

The constrained-objective scalarization of the MOP, also known as the epsilon-constraint method
(see Chankong and Haimes (1983)), is defined as

CO(δ): minimize f1(x) subject to x ∈ S := {x ∈ X : fi(x) ≤ δi, i = 2, . . . ,m},

where δi ∈ R, i = 2, . . . ,m are given upper bounds on the objectives fi, i = 2, . . . ,m. Observe that
for this scalarization T = {y ∈ Y : yi ≤ δi, i = 2, . . . ,m}, U = ∅ and Π = Rm−1.

Relationships between ε-optimal solutions of this scalarization and ε-efficient decisions of the
MOP were also examined by White (1986).

Proposition 3.2 Given the MOP and ε ∈ Rm
=, let ε ≤ ε1.

(i) If ŷ ∈ T is strictly ε-optimal for the CO(δ), then ŷ is ε-Pareto for the MOP.

(ii) If ŷ ∈ T is ε-optimal for the CO(δ), then ŷ is weak ε-Pareto for the MOP.

Proof We only prove (i) and then (ii) follows analogously. Let ŷ ∈ T be strictly ε-optimal for the
CO(δ),

ŷ1 < y1 + ε for all y ∈ T, y 6= ŷ,

and suppose that ŷ is not ε-Pareto. Then there exists y ∈ Y, y 6= ŷ such that ŷ ≥ y + ε, yielding

ŷ1 ≥ y1 + ε1 ≥ y1 + ε;

ŷi ≥ yi + εi ≥ yi, i = 2, . . . ,m.

Since ŷ ∈ T , we have ŷi ≤ δi, i = 2, . . . ,m, and therefore y ∈ T in contradiction to the above.
Hence, ŷ is ε-Pareto for the MOP. ¤

Corollary 3.2 Given the MOP and ε ∈ Rm
=, let ε ≤ ε1.

(i) If x̂ ∈ S is strictly ε-optimal for the CO(δ), then x̂ is ε-efficient for the MOP.

(ii) If x̂ ∈ S is ε-optimal for the CO(δ), then x̂ is weakly ε-efficient for the MOP.

3.3 Guddat scalarization

This scalarization developed by Guddat et al. (1985) combines the weighted-sum with the constrained-
objective scalarization and is defined as

G(x◦, w): minimize
m∑

i=1

wifi(x) subject to x ∈ S := {x ∈ X : f(x) 5 f(x◦)},
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where x◦ ∈ X is a given feasible decision and w ∈ Rm
≥ is a given weighting parameter.

Denote y◦ = f(x◦) and observe that for this scalarization T = {y ∈ Y : y 5 y◦}, U = ∅ and
Π = X × Rm

≥ .

Proposition 3.3 Given the MOP and ε ∈ Rm
=, let ε ≤

∑m
i=1 wiεi.

(i) If ŷ ∈ T is strictly ε-optimal for the G(x◦, w), then ŷ is ε-Pareto for the MOP.

(ii) If ŷ ∈ T is ε-optimal for the G(x◦, w), then ŷ is weak ε-Pareto for the MOP.

(iii) If ŷ ∈ T is ε-optimal for the G(x◦, w) with w ∈ Rm
> , then ŷ is ε-Pareto for the MOP.

Proof In principle, each part is proven as shown for the weighted-sum in Proposition 3.1. How-
ever, due to the additional constraints in the Guddat scalarization, we have to verify that the
attainable outcome y ∈ Y yielding the contradiction in each of the three cases is also attainable in
the Guddat formulation, i.e., y ∈ T . We only give the additional details for (i) and then (ii) and
(iii) follow analogously.

Let ŷ ∈ T be strictly ε-optimal for the G(x◦, w), and suppose that ŷ is not ε-Pareto. Then there
exists y ∈ Y, y 6= ŷ with ŷ ≥ y + ε, yielding

y ≤ ŷ − ε ≤ ŷ ≤ y◦

since ŷ ∈ T is attainable for G(x◦, w). This verifies y ∈ T , and the proof is complete. ¤

Corollary 3.3 Given the MOP and ε ∈ Rm
=, let ε ≤

∑m
i=1 wiεi.

(i) If x̂ ∈ S is strictly ε-optimal for the G(x◦, w), then x̂ is ε-efficient for the MOP.

(ii) If x̂ ∈ S is ε-optimal for the G(x◦, w), then x̂ is weakly ε-efficient for the MOP.

(iii) If x̂ ∈ S is ε-optimal for the G(x◦, w) with w ∈ Rm
> , then x̂ is ε-efficient for the MOP.

3.4 Benson scalarization

This scalarization developed by Benson (1978) is defined as

B(x◦): minimize
m∑

i=1

li subject to f(x◦) + l ∈ f(X) = Y, l 5 0,

where x◦ ∈ X is a given feasible decision.
Observe that the Benson scalarization uses U = {l ∈ Rm : l 5 0} = −Rm

= as set of auxiliary
variables. Furthermore, for this scalarization S = {x ∈ X : f(x) 5 f(x◦)}, T = {y ∈ Y : y 5 f(x◦)}
and Π = X.
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The above formulation of the Benson scalarization can be rewritten as

minimize
m∑

i=1

fi(x) − fi(x◦) subject to x ∈ S,

where minx∈S {
∑m

i=1 fi(x) − fi(x◦)} = minx∈S {
∑m

i=1 fi(x)} −
∑m

i=1 fi(x◦). We conclude that

B̃(x◦) : minimize
m∑

i=1

fi(x) subject to x ∈ S := {x ∈ X : f(x) 5 f(x◦)}

is equivalent to the Benson problem B(x◦), and therefore that B(x◦) ≡ B̃(x◦) ≡ G(x◦, 1).
Therefore, we can immediately derive that Proposition 3.3(iii) and Corollary 3.3(iii) also hold

true for the Benson scalarization. Nevertheless, we present an alternative proof based on the original
problem formulation by Benson.

Proposition 3.4 Given the MOP and ε ∈ Rm
=, let ε ≤

∑m
i=1 εi.

(i) If ŷ = y◦ + l̂ ∈ Y is ε-optimal for the B(x◦), then ŷ is ε-Pareto for the MOP.

(ii) If in addition
∑m

i=1 l̂i = 0, then y◦ = f(x◦) ∈ Y is ε-Pareto for the MOP.

Proof For (i), let ŷ = y◦ + l̂ ∈ Y be ε-optimal for the B(x◦) with y◦ = f(x◦),

m∑
i=1

l̂i ≤
m∑

i=1

li + ε whenever y◦ + l ∈ Y, l 5 0,

and suppose that ŷ is not ε-nondominated. Then there exists y = y◦ + l ∈ Y, y 6= ŷ such that
ŷ ≥ y + ε, yielding

l = y − y◦ ≤ ŷ − ε − y◦ = l̂ − ε 5 0

and thus
m∑

i=1

l̂i >

m∑
i=1

li +
m∑

i=1

εi ≥
m∑

i=1

li + ε

in contradiction to the above. Hence, ŷ is ε-Pareto for the MOP.
The second statement now follows from the first by observing that

∑m
i=1 l̂i = 0 with l̂ 5 0

implies that l̂ = 0, and thus ŷ = y◦ = f(x◦). ¤

Corollary 3.4 Given the MOP and ε ∈ Rm
=, let ε ≤

∑m
i=1 εi.

(i) If x̂ ∈ X is ε-optimal for the B(x◦), then x̂ is ε-efficient for the MOP.

(ii) If in addition
∑m

i=1 l̂i = 0, then x◦ is ε-efficient for the MOP.
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3.5 Min-max scalarization

The min-max scalarization, also known as the max-ordering approach (see Kouvelis and Yu (1997)),
is defined as

MM: minimize max
i=1,...,m

{fi(x)} subject to x ∈ X.

Observe that for this scalarization S = X, Y = T and both U = Π = ∅.

Proposition 3.5 Given the MOP and ε ∈ Rm
=, let ε ≤ mini=1,...,m{εi}.

(i) If ŷ ∈ Y is strictly ε-optimal for the MM, then ŷ is ε-Pareto for the MOP.

(ii) If ŷ ∈ Y is ε-optimal for the MM, then ŷ is weak ε-Pareto for the MOP.

Proof We only prove (i) and then (ii) follows analogously. Let ŷ ∈ Y be strictly ε-optimal for
the MM,

max
i=1,...,m

{ŷi} < max
i=1,...,m

{yi} + ε for all y ∈ Y, y 6= ŷ,

and suppose that ŷ is not ε-Pareto. Then there exists y ∈ Y, y 6= ŷ such that ŷ ≥ y + ε, yielding

max
i=1,...,m

{ŷi} ≥ max
i=1,...,m

{yi + εi}

≥ max
i=1,...,m

{yi} + min
i=1,...,m

{εi}

≥ max
i=1,...,m

{yi} + ε

in contradiction to the above. Hence, ŷ is ε-Pareto for the MOP. ¤

Corollary 3.5 Given the MOP and ε ∈ Rm, let ε ≤ mini=1,...,m{εi}.

(i) If x̂ ∈ X is strictly ε-optimal for the MM, then x̂ is ε-efficient for the MOP.

(ii) If x̂ ∈ X is ε-optimal for the MM, then x̂ is weakly ε-efficient for the MOP.

3.6 Tchebycheff-norm scalarization

The weighted Tchebycheff-norm scalarization of the MOP is defined as

TN(r, w): minimize max
i=1,...,m

{wi(fi(x) − ri)} subject to x ∈ X,

where r ∈ Rm is a given reference or utopia point (see Steuer (1986)) and w ∈ Rm
≥ is a given

weighting parameter.
Observe that for this scalarization S = X, T = Y , U = ∅ and Π = Rm × Rm

≥ .
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Moreover, note that the min-max scalarization discussed previously is a special case of the
weighted Tchebycheff-norm formulation. More precisely, if we choose the reference point r = 0 ∈
Rm and the weighting parameter w = 1 ∈ Rm

> , then MM ≡ TN(0,1).

Proposition 3.6 Given the MOP and ε ∈ Rm
=, let ε ≤ mini=1,...,m{wiεi}.

(i) If ŷ ∈ Y is strictly ε-optimal for the TN(r, w), then ŷ is ε-Pareto for the MOP.

(ii) If ŷ ∈ Y is ε-optimal for the TN(r, w), then ŷ is weak ε-Pareto for the MOP.

Proof We only prove (i) and then (ii) follows analogously. Let ŷ ∈ Y be strictly ε-optimal for
the TN(r, w),

max
i=1,...,m

{wi(ŷi − ri)} < max
i=1,...,m

{wi(yi − ri)} + ε for all y ∈ Y, y 6= ŷ,

and suppose that ŷ is not ε-Pareto. Then there exists y ∈ Y, y 6= ŷ such that ŷ ≥ y + ε, yielding

max
i=1,...,m

{wi(ŷi − ri)} ≥ max
i=1,...,m

{wi(yi − ri + εi)}

≥ max
i=1,...,m

{wi(yi − ri)} + min
i=1,...,m

{wiεi}

≥ max
i=1,...,m

{wi(yi − ri)} + ε

in contradiction to the above. Hence, ŷ is ε-Pareto for the MOP. ¤

Corollary 3.6 Given the MOP, let ε ≤ mini=1,...,m{wiεi}.

(i) If x̂ ∈ X is strictly ε-optimal for the TN(r, w), then x̂ is ε-efficient for the MOP.

(ii) If x̂ ∈ X is ε-optimal for the TN(r, w), then x̂ is weakly ε-efficient for the MOP.

3.7 Pascoletti-Serafini scalarization

The direction method developed by Pascoletti and Serafini (1984) for the MOP is defined as

PS(r, v): minimize µ subject to r + µv − d ∈ f(X) = Y, d ∈ D,

where r ∈ Rm is a given reference point and v ∈ D \ {0} is a given dominated direction. Here
D ⊂ Rm is a convex cone implying that D + D ⊆ D.

Observe that this scalarization uses µ ∈ R as an auxiliary variable, d ∈ C is a dominated slack
vector and Π = Rm × D \ {0}.

Proposition 3.7 Given the MOP for a convex cone D ⊂ Rm and ε ∈ D, let ε ∈ {δ : ε − δv ∈ D}
and denote dε = ε − εv ∈ D.
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(i) If ŷ = r + µ̂v − d̂ ∈ Y is strictly ε-optimal for the PS(r, v), then ŷ is ε-nondominated for the
MOP.

(ii) If ŷ is ε-optimal for the PS(r, v), then ŷ is weakly ε-nondominated for the MOP.

Proof We give the complete proof for both (i) and (ii). For (i), let ŷ with d̂ ∈ D be strictly
ε-optimal for the PS(r, v),

µ̂ < µ + ε whenever r + µv − d ∈ Y for some d ∈ D,

and suppose that ŷ is not ε-nondominated for the MOP. Then there exists y ∈ Y, y 6= ŷ and d ∈ D

such that ŷ = y + d + ε, yielding

y = r + µ̂v − d̂ − d − ε

= r + µ̂v − d̂ − d − (εv + dε)

= r + (µ̂ − ε)v − (d̂ + d + dε),

where d̂ + d + dε ∈ D as D is a convex cone. Now denote µ = µ̂ − ε, and then µ̂ = µ + ε in
contradiction to the above. Hence, ŷ is ε-nondominated for the MOP.

For (ii), let ŷ with d̂ ∈ D be ε-optimal for the PS(r, v),

µ̂ ≤ µ + ε whenever r + µv − d ∈ Y for some d ∈ D,

and suppose that ŷ is not weakly ε-nondominated for the MOP. Then there exists y ∈ Y , y 6= ŷ, d ∈
intD such that ŷ = y + d + ε. Since d ∈ intD, there also exists γ > 0 such that dγ = d − γv ∈ D

yielding

y = r + µ̂v − d̂ − d − ε

= r + µ̂v − d̂ − (γv + dγ) − (εv + dε)

= r + (µ̂ − γ − ε)v − (d̂ + dγ + dε),

where d̂+dγ +dε ∈ D as D is a convex cone. Now denote µ = µ̂−γ−ε, and then µ̂ = µ+γ+ε > µ+ε

in contradiction to the above. Hence, ŷ is weakly ε-nondominated for the MOP. ¤

Corollary 3.7 Given the MOP, D ⊂ Rm a convex cone and ε ∈ D, let ε ∈ {δ : ε − δv ∈ D}.

(i) If x̂ ∈ X is strictly ε-optimal for the PS(r, v), then x̂ is ε-efficient for the MOP.

(ii) If x̂ ∈ X is ε-optimal for the PS(r, v), then x̂ is weakly ε-efficient for the MOP.
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4 Computation of ε-efficient solutions

Based on the results derived in the previous section, we now propose a generic procedure for
computing ε-efficient decisions. The main idea is that solving any previous SOP for a (strictly) ε-
optimal solution produces a (weakly) ε-efficient decision for the MOP, where the exact relationships
are summarized in Table 1. Note that the weighted-sum, Guddat and Benson methods give the
strongest results among the SOPs discussed.

Table 1: Relationships between ε-optimality and ε-efficiency

scalarization method strict ε-opt. ⇒ ε-eff. ε-opt. ⇒ weak ε-eff. ε-opt. ⇒ ε-eff.
weighted-sum yes yes yes

constrained-objective yes yes no
Guddat yes yes yes
Benson yes yes yes

min-max yes yes no
Tchebycheff-norm yes yes no
Pascoletti-Serafini yes yes no

We derived that the Benson method can be considered a special case of the Guddat method.
Furthermore, it is well known that the weighted-sum method in general fails for nonconvex prob-
lems. Therefore, we recommend that the weighted-sum method be applied for convex problems
and the Guddat scalarization be applied for nonconvex problems.

The procedure assumes that based on prior knowledge and experience, the decision maker is
able to choose a suitable vector parameter ε and the scalarization parameter π ∈ Π required by the
SOP of interest. Clearly, these choices depend on the concrete problem to be solved, for which more
specific advice can be given. However, note that except for the Pascoletti-Serafini scalarization,
each SOP implies an upper bound on the set of allowable values for ε ∈ R such that an ε-optimal
solution for the SOP is guaranteed to be (weakly) ε-efficient for the MOP. For the Pascoletti-Serafini
scalarization, this upper bound can be found for the particular case of D being the Pareto cone,
D = Rm

=, and v ≥ 0. Given that ε ∈ {δ : ε − δv ∈ Rm
=}, we obtain

ε = max{δ : ε − δv ∈ Rm
=}

= max{δ : ε = δv}

= max{δ : εi ≥ δvi for all i = 1, . . . ,m}

= max{δ : εi/vi ≥ δ for all i = 1, . . . ,m}

= min
i=1,...,m

{εi/vi}

12



When solving an SOP for ε-optimality, we recommend that the actual ε should be chosen as
the upper bound if the largest tolerance is expected. However, the decision maker may choose any
other value of ε smaller than the upper bound and hence gain control over the ε-efficiency of feasible
decisions for the MOP.

The proposed procedure is given in Table 2.

Table 2: Procedure for the computation of ε-efficient solutions

1. Choice of ε: Choose an admissible vector ε ∈ Rm.

2. Choice of the SOP: Choose a scalarization method SOP.

3. Choice of π: Choose the scalarization parameter π ∈ Π.

4. Computation of ε: Compute the corresponding ε ∈ R.

5. Solving the SOP: Solve the SOP for an ε-optimal solution.

Table 3 summarizes the required parameters π ∈ Π, the admissible ε ∈ Rm and the correspond-
ing upper bounds of ε ∈ R for the SOPs examined in the previous section. Note that in case of the
min-max scalarization, the third step (choice of π) does not apply.

Table 3: Parameters for the computation of ε-efficient solutions

scalarization method parameter π ∈ Π admissible ε ε = ε(ε, π)
weighted-sum w ∈ Rm

≥ ε ∈ Rm ε =
∑m

i=1 wiεi

constrained-objective δ ∈ Rm−1 ε ∈ Rm
= ε = ε1

Guddat (x◦, w) ∈ X × Rm
≥ ε ∈ Rm

= ε =
∑m

i=1 wiεi

Benson x◦ ∈ X ε ∈ Rm
= ε =

∑m
i=1 εi

min-max no parameter ε ∈ Rm ε = mini=1,...,m{εi}
Tchebycheff-norm (r, w) ∈ Rm × Rm

≥ ε ∈ Rm ε = mini=1,...,m{wiεi}
Pascoletti-Serafini (r, v) ∈ Rm × Rm

≥ ε ∈ Rm
= ε = mini=1,...,m{εi/vi}

5 Example and Applications

We illustrate the procedure derived in the previous section on the engineering example of designing
a four-bar plane truss as given in Figure 1, thereby adopting the model given in Stadler and Dauer
(1992) and further discussed in Coello et al. (2002).

The problem is formulated as a biobjective program with the two conflicting objectives of
minimizing both the volume V of the truss (f1) and the displacement ∆ of the joint (f2), subject
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to given physical restrictions regarding the feasible cross sectional areas x1, x2, x3, x4 of the four
bars. The stress on the truss is caused by three forces of magnitudes F and 2F as depicted in
Figure 1. The length L of each bar and the elasticity constants E and σ of the materials involved
are modeled as constants.
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Figure 1: A four-bar plane truss.

The mathematical formulation of this problem is given by

minimize
{

f1(x) = L(2x1 +
√

2x2 +
√

2x3 + x4),

f2(x) =
FL

E

(
2
x1

+
2
√

2
x2

− 2
√

2
x3

+
1
x4

)}
subject to (F/σ) ≤ x1 ≤ 3(F/σ),

√
2(F/σ) ≤ x2 ≤ 3(F/σ),

√
2(F/σ) ≤ x3 ≤ 3(F/σ),

(F/σ) ≤ x4 ≤ 3(F/σ).

Here the constant parameters are chosen as F = 10 kN, E = 2 × 105 kN/cm2, L = 200 cm and
σ = 10 kN/cm2. Since this problem is convex, we chose the weighted-sum method and initially
solved the problem for five hundred weighting parameters w = (w1, w2), yielding five hundred
Pareto outcomes on the Pareto curve.

Based on the magnitudes of the found values for truss volume (between 1200 cm3 and 2100 cm3)
and joint displacement (between 0.01 cm and 0.04 cm), we then allowed a tolerance of ε1 = 50 cm3

(200 cm3) for the volume and of ε2 = 0.0005 cm (0.002 cm) for the displacement. Again using
the weighted-sum method with same weighting parameters w as before, we solved the scalarized
problem while allowing a maximal deviation of ε = w1ε1 + w2ε2 from the Pareto optimum as a
stopping criterion. Both the Pareto curve and the epsilon-Pareto outcomes obtained in each of the
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two cases are given in Figure 2.
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Figure 2: Pareto and epsilon-Pareto outcomes

As we expect, increasing the specified tolerances on truss volume and joint displacement from
comparably small to comparably large values causes the ε-Pareto outcomes to move further from the
Pareto curve. We also observe that the quality of ε-Pareto outcomes varies significantly along the
Pareto curve. The best results are obtained for a truss volume between 1500 cm3 and 2100 cm3 and
a joint displacement between 0.015 cm and 0.025 cm. Moreover, the number of distinct outcomes
generated is much greater for the Pareto than for the ε-Pareto outcomes.

While the knowledge of efficient decisions and Pareto outcomes has proven to be imperative
for modern decision making, approximate efficient solutions (or Pareto outcomes) have not been
applied in real-life decision making. We however believe that the capability of computing approx-
imate efficient solutions may enhance and facilitate a decision making process performed within a
multiobjective programming-based framework. We envision two types of circumstances in which
approximate solutions should be relevant.

First, robustness and sensitivity of efficient solutions and Pareto outcomes can be differently
approached. In the classical approach, an efficient decision x is perturbed by δx to observe the
corresponding change δy in the outcome y and the ratio δx/δy is analyzed. In the new approach,
perturbation could take place in the objective rather than decision space. A Pareto outcome y could
be perturbed by δy = ε to produce an ε-Pareto outcome and the related efficient and ε-efficient
decisions could be generated allowing thereby for the analysis of the same ratio but in a different
setting.

The second direction is related to the relaxation of Pareto-optimality to ε-Pareto optimality
so that the set of Pareto outcomes is enlarged with suboptimal outcomes. Such relaxation can
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be useful when dealing with a collection of MOPs for all of which an efficient decision may not
exist. Here the MOPs yield a family of Pareto sets and outcomes that are Pareto for one MOP but
may not be Pareto for another. This lack of Pareto-optimality can be conveniently modeled and
controlled with the concept of ε-Pareto optimality, and the decision maker may gain control over
what it takes for a feasible decision to become ε-efficient for all MOPs. In this way, the decision
maker can be more closely engaged in the decision process not only at the level of choosing from
among efficient solutions but also at the level of deciding solutions’ efficiency.

6 Conclusion

Seven scalarization methods are examined with respect to their capability of generating ε-efficient
solutions for multiobjective programming problems (MOPs). It is found that for each method,
by appropriate choices of the involved parameters, ε-optimal solutions for the associated single
objective program become ε-efficient for the MOP. Quantitative relationships between ε and ε are
derived. An example from engineering design illustrates the proposed procedure for computing
ε-efficient solutions. Real-life decision making situations benefiting from ε-efficiency are described
and their resolution appears to be a promising direction of further research.
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Vályi, I. (1985). Approximate solutions of vector optimization problems. In Systems Analysis and
Simulation 1985, I (Berlin, 1985), volume 27 of Math. Res., pages 246–250. Akademie-Verlag,
Berlin.

17



White, D. J. (1986). Epsilon efficiency. Journal of Optimization Theory and Applications, 49(2):319–
337.

White, D. J. (1998a). Epsilon dominance and constraint partitioning in multiple objective problems.
Journal of Global Optimization, 12(4):435–448.

White, D. J. (1998b). Epsilon-dominating solutions in mean-variance portfolio analysis. European
Journal of Operational Research, 105(3):457–466.

Yokoyama, K. (1996). Epsilon approximate solutions for multiobjective programming problems.
Journal of Mathematical Analysis and Applications, 203(1):142–149.

Yokoyama, K. (1999). Relationships between efficient set and ε-efficient set. In Nonlinear Analysis
and Convex Analysis (Niigata, 1998), pages 376–380. World Sci. Publishing, River Edge, NJ.

Yu, P.-L. (1974). Cone convexity, cone extreme points, and nondominated solutions in decision
problems with multiobjectives. Journal of Optimization Theory and Applications, 14:319–377.

18


